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Abstract

Using an ensemble of classifiers instead of a single classifier has been shown to improve
generalization performance in many pattern recognition problems. However, the extent of
such improvement depends greatly on the amount of correlation among the errors of the base
classifiers. Therefore, reducing those correlations while keeping the classifiers’ performance
levels high is an important area of research. In this article, we explore input decimation
(ID), a method which selects feature subsets for their ability to discriminate among the
classes and uses these subsets to decouple the base classifiers. We provide a summary of
the theoretical benefits of correlation reduction, along with results of our method on two
underwater sonar data sets, three benchmarks from the Proben1/UCI repositories, and two
synthetic data sets. The results indicate that input decimated ensembles outperform ensem-
bles whose base classifiers use all the input features; randomly selected subsets of features;
and features created using principal components analysis, on a wide range of domains.

1 Introduction

Using an ensemble of classifiers (also known as combiners or committees) instead of a single
classifier has been repeatedly shown to improve generalization performance in many pattern
recognition problems [9, 17, 71]. It is well-known that, in order to obtain such improvement,
one needs to simultaneously maintain a reasonable level of performance in the base classifiers
that constitute the ensemble and reduce their correlations [1, 29, 44, 49, 65]. There are many
ensemble methods that actively promote diversity (e.g., modify error surface, lower correlations
of the outputs) among their base classifiers [49, 58, 65]. Most work in this field, however, focuses
on pattern-level selection (e.g., Bagging [9], Boosting [22]). These methods bring about diversity
in the base models by training them with different subsets of the training set. One drawback of
such methods is that by definition, only a portion of the available data is used during learning.



This can lead to poor performance, particularly when the data sets are small to begin with.
Training the base classifiers using different subsets of features avoids this issue as all the patterns
can be used in training while still yielding base model diversity.
Two possible feature selection/extraction methods are Principal Component Analysis (PCA)[31,
52] and random subspace selection [25]. PCA constructs new features such that the data has
maximum variability over those features. However, PCA, when used in combining, not only
generates the same features for all classifiers in the pool, but also fails to take class information
into account. Random subspace selection overcomes the first shortcoming of PCA, but it too
does not consider the class labels when generating the feature subsets. Consequently, these two
methods do not attempt to choose features in a manner that is helpful in the classification task.
In this paper, we present input decimation—a method of choosing different subsets of the orig-
inal features based on the correlations between individual features and class labels, and training
classifiers on those subsets prior to combining. This method not only reduces the dimensionality
of the data, but uses this dimensionality reduction to reduce the correlations among the classifiers
in an ensemble, thereby improving the classification performance of the ensemble [51, 64, 69].
Our results indicate that input decimation reduces the error up to 90% over single classi-
fiers and ensembles trained on all features, randomly-selected subsets of features, and principal
components. While we expected strong ensemble performance, input decimation also provides
improvements in the base classifiers in many cases by pruning extraneous or irrelevant features,
thus simplifying the learning problem faced by each base classifier. In this study we use the
“averaging” combiner! for two reasons: (i) despite its simplicity (or perhaps because of it) this
combiner has been shown to perform well and hold its own against a wide array of more sophis-
ticated methods [16, 17]; and (ii) by choosing a simple combiner we isolate the effects of input
decimation from those of the combining method. Furthermore, pattern-level ensemble meth-
ods such as bagging, boosting, and stacking can be used in conjunction with input decimation
which is a feature-level ensemble method (i.e., input decimation is orthogonal to those methods).
Therefore, one can make meaningful comparisons between averaging combiners with and without
input decimation, or say, between stacking or bagging with and without input decimation (not
reported in this article), but not between input decimated ensembles and bagging or boosting.
In Section 2, we summarize a theory of classifier ensembles that highlights the connection
between correlation among base classifiers and ensemble performance, along with a brief overview
of different dimensionality reduction methods. In Section 3 we present the details of the input
decimated ensemble, and in Section 4 we provide experimental results on two underwater sonar
data sets, three data sets from the PROBEN1/UCI benchmarks [6, 54], and two synthetic data
sets which allow a systematic study of input decimation. We conclude with a discussion on
the effectiveness of input decimation under various circumstances along with future research
directions in Section 5.

I The output of the combiner is the average of the outputs of the base classifiers. More details are given in the
next section.



2 Background

Model selection is an important issue in many pattern recognition problems. Neither the selection
of the method (e.g., multi-layer perceptron, nearest neighbor algorithm), nor the tuning of that
algorithm can yet be fully automated for all problems [15, 20, 23]. The use of ensembles provides
partial relief since, by pooling the classifiers before a decision is made, the sensitivity to any
single classifier is greatly reduced. Of course, the more similar the classifiers are, the less likely it
is that new information will be present in the ensemble, resulting in little more than a “rubber
stamping” committee. In this section we first formalize this connection between the correlation
among the classifiers’ errors and ensemble performance and then discuss various methods that
aim to reduce that correlation.

2.1 Correlation and Ensemble Performance

In this article we focus on classifiers that model the a posteriori probabilities of the output classes.
Such algorithms include Bayesian methods [4], and properly trained feed forward neural networks
such as Multi-Layer Perceptrons (MLPs) [56]. We can model the ith output of such a classifier
as follows (details of this derivation are in [64, 65]):

fi(z) = P(Ci|z) + ni(z),

where P(C;|z) is the posterior probability of the ith class given pattern z, and 7;(x) is the error
associated with the ith output. Given an input z, if we have one classifier, we classify z as being
in the class ¢ whose value f;(z) is largest.

Instead, if we use an ensemble that calculates the arithmetic average over the outputs of N
classifiers f*(x) , m € {1,..., N}, then P(C;|z) is given by:

N
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and ni"(z) is the error associated with the ith output of the mth classifier.
Now, the variance of 7;(x) is given by [65]:
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If we express the covariances in terms of the correlations (cov(z,y) = corr(z,y)o,0y), assume

2

the same variance oy

. across classifiers, and use the average correlation factor among classifiers,
d;, given by
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then the variance becomes:
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Though this reduction in variance is reflected in a reduction in the error of the classifier, only
the model error, i.e., the error additional to the Bayes error, is reduced.? Equation 4 shows the

formalization of this concept based on the model error of the ensemble (E2%, ;) and that of an
individual classifier (Epnoqer) [64, 65]:

wve 1+6(N -1
'model — ( SV )> Emodel (4)

where § is the correlation among the classifiers’ errors, and can be empirically computed [64, 65].

2.2 Correlation Reduction Methods

As summarized above, if the classifiers to be combined repeatedly provide the same (either
erroneous or correct) classification decisions, there is little to be gained from combining, regardless
of the chosen scheme. As equation 4 shows, reducing § and increasing N are two manners by
which the performance of a classifier ensemble can be improved. However, these two solutions
are not independent.

Figure 1 best illustrates this phenomenon, where the error reduction’s dependence on the
correlation among the classifiers is displayed as a function of the number of classifiers (based on
Equation 4). For example, even though increasing the number of classifiers from 4 to 8 does not
provide any sizable gains when the correlation is 0.9, it provides significant gains if the correlation
is 0.1. That is, keeping the correlations low not only provides better error reduction for a given
number of classifiers, but provides greater gains when adding classifiers.

To improve ensemble performance, then, one must either actively promote diversity during
training or achieve diversity through the selection of the data presented to the base classifier
training algorithms. Examples of the former include distorting the output space through error-
correcting output codes [18], using principal component analysis on the output space [45], using

2Note that the total error, E;ys,;, of a classifier is the sum of the Bayes error, EBayes, and the model er-
ror, E,0de;- In practice this fact can be used to estimate the Bayes error based on the improvements due to
ensembles [63, 66].
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Figure 1: Effect of correlation on error reduction.

genetic algorithms to train the classifier [50, 61] or modifying the error function used for train-
ing [58]. Examples of the latter include bagging [9], cross-validation partitioning [40, 65] and
boosting [22]. The most common data selection methods focus on the “pattern” space, though
dimensionality reduction methods which manipulate the feature space can also be used. Feature
space methods have the advantage that they do not reduce the number of patterns available for
training each classifier. They generally fall into one of two different classes of methods: feature
selection or feature extraction.

Feature extraction algorithms such as Principal Components Analysis (PCA) [5, 31, 52] or
Independent Component Analysis (ICA) [28] reduce the dimensionality of the data by creating
new features. Linear PCA, perhaps the most commonly used feature extraction method, creates
new features that are linear combinations of the original features. The aim of PCA, however,
is to devise features on which the data shows the highest variability, whether those features are
useful for classification or not [5]. Furthermore, because all the information present in the initial
features is “crammed” into fewer principal components, there is a danger that classifiers trained
on the principal components will have higher rather than lower correlations among them.

Figure 2 demonstrates the perils of not using class information. The left half of the figure
shows a case in which PCA works effectively. In this case the first principal component (y;)
corresponds to the variable with the highest discriminating power. The right half shows the same
data distribution (i.e., same principal components) with different class labels. Yet, because the
first principal component is not “aligned” with the class labels, selecting this principle component
as an input feature is a poor choice in this case. Indeed, an input set consisting of only the first
component would provide practically random decisions on this data set.> Yet, PCA remains one

3There are variations on PCA that use local and/or nonlinear processing to improve dimensionality reduction
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Figure 2: PCA and classification: The first principal (y1) can provide a good discriminating
feature (left) or a poor one (right), since the class membership information is not used.

of the most frequently used dimensionality reduction methods in many classification domains,
including medical and space applications [55, 60].

Feature selection algorithms focus on selecting a subset of the original features to present to
the classifiers. One example is the random subspace method [25] where random subsets of the
original features are presented to the classifiers. However, looking at y; and y» (assuming those
two are the original features) in Figure 2 shows a pitfall of random feature selection. Randomly
selecting feature y; in the class configuration shown in (a) will lead to satisfactory classification,
whereas randomly selecting feature y; in (b) will lead to all discriminating information being
lost. Many other feature selection methods use various criteria for deciding the relevance of
each feature to the task at hand and choose some subset of the features according to those
criteria [3, 7, 8, 10, 19, 30, 43]. The subset selection can be distinct from the learning, which
is the case with filter methods. However, most of these feature selection methods attempt to
choose features that are useful in discriminating across all classes. Using such a method within
an ensemble learning scheme would have limited effectiveness since it would choose the same
features for every base classifier, leading to relatively small correlation reduction. One exception
is to break an L-class problem into (12“) two-class problems and perform feature selection within
each of those problems [41]. In many real-world problems, there are features that are useful at
distinguishing whether a pattern is of one particular class but are not useful at distinguishing
among the remaining classes. In the next section we present input decimation, which takes

[13, 33, 34, 47, 48, 59]. Although these methods implicitly account for some class information and therefore are
better suited than global PCA methods for classification problems, they do not directly use class information.



advantage of this fact to reduce both the dimensionality and the correlation of classifiers in an
ensembles.

3 Input Decimated Ensembles

Input Decimation (ID) decouples the classifiers by exposing them to different aspects of the same
data. ID trains L classifiers, one corresponding to each class in an L-class problem.* For each
classifier, the method selects a user-determined number of the input features having the highest
absolute correlation to the presence or absence of the corresponding class.® The objective is to
“weed” out input features that do not carry strong discriminating information for a particular
class, and thereby reduce the dimensionality of the feature space to facilitate the learning process.
Additionally, the classifiers’ features are selected using different relevance criteria, which leads to
different feature subsets for each base classifier and a reduction in their correlations.
Let the training set, Dy, take the following form:

Dtr : {(X1,Y1), (X27y2)a LREE (Xm;Ym)};

where m is the cardinality of Dy, i.e., number of training examples. Each x; is an |[|F||-
dimensional vector (where F' is the set of input features). Each y; represents the class using
a distributed encoding, i.e., it has L elements, where L is the number of classes, y; = 1 if exam-
ple ¢ belongs to class | and y; = 0 otherwise. In this study our base classifiers consist of MLPs
trained with the backpropagation algorithm.5

Given such a data set, and a base classifier learning algorithm, input decimated ensemble
learning operates as follows:

e For each class 1 € {1,2,...,L},

1. Compute the decimation coefficient v for each feature j and class [, given by:
vji = |corr(xy,yu)| -

2. Select the n; features having the highest decimation coefficient, resulting in new feature
set Fj. One can either predetermine n; based on prior information about the data set,
or learn the value to optimize performance.

3. Construct a new training set by retaining only those elements of the x;’s corresponding
to the features F; and all the outputs.

4More generally, one trains nL classifiers where n is a positive integer.

5Note that this method requires the problem to have at least three classes. In a two-class problem, features
strongly correlated with one class will be strongly anti-correlated with the other class, so the same features would
be chosen for both classifiers.

In principle, any learning algorithm that estimates the a posteriori class probabilities can be used.



4. Run the base classifier learning algorithm on this new training set. Call the resulting
classifier f!.7

Given a new example z, we classify it as follows:

e Foreachclass k € {1,2,..., L}, calculate f2"*(z) = + Elel fi(z), by presenting the proper
features F of example x to each of the L classifiers f!.8

e Return the class K = argmazy, f2*¢(z).

Note that all the training patterns are used to train all the base classifiers. Fundamentally,
input decimation seeks to reduce the correlations among individual classifiers by using different
subsets of input features, while pattern-level methods such as bagging and boosting attempt to
do so by choosing different subsets of training patterns.

4 Experimental Results

In this section, we present the results of input decimation on two underwater sonar data sets,
three Probenl/UCI benchmark data sets and two synthetic data sets. In all the results reported
below, the base classifiers consist of Multi-Layer Perceptrons (MLPs) with a single hidden layer
trained with the backpropagation algorithm. The learning rate, momentum term, and number of
hidden units were experimentally determined. In all cases, we report test set error rates averaged

over 20 runs, along with the differences in the mean.®

4.1 Passive Sonar Signals

A real world problem with all the characteristics required for a complete study is that of classifying
short duration underwater signals obtained from passive sonar signals [14]. Both biological
and non-biological phenomena produce such short duration sounds, and experts can determine
the cause by studying their pulse signatures or spectrograms. Automating this classification
process is a difficult process because these signals are highly non-stationary, have different spectral
characteristics depending on sources and propagation paths and may have significant overlap. A
more detailed description of the sonar signals and the difficulty associated with their classification
can be found in [24, 64].

The two data sets used for this experiment are both extracted from short—duration passive
sonar signals due to four naturally occurring oceanic sources (sound of ice cracking, porpoise and

"If one is training nL classifiers for n > 1, then the algorithm calls the base classifier learning algorithm n
times to create n classifiers f!1, f12,..., fi" with feature set Fj.

8If we are instead training nL classifiers for n > 1, then we calculate f2¥¢(z) = - Ele Yo fi ().

9That is, for an error with mean g and variance o2, we report the u + zr/\/? where K is the number of
repetitions (K=20 for experiments reported here). Confidence intervals of desired sensitivity can be obtained
directly from the differences in the means.



two different whale sounds). Although there is some complementarity among the data sets, for the
purposes of this study we will treat them as different data sets.'® The first set, SONARI, consists

of 25 features, including 16 Gabor wavelet coefficients,!!

signal duration and other temporal
descriptors and spectral measurements. There were 496 training and 823 test patterns. The
second set, SONAR2, consists of 24 features, including reflection coefficients corresponding to
the maximum broadband energy segment using both short and long time windows, signal duration
and other temporal descriptors. There were 564 training and 823 test patters. For both data
sets, we used an MLP with 50 hidden units.

Table 1 shows the error rates, differences in the mean, and correlation among the base classi-
fiers for both the full feature set and the input decimated set for N = 4 and N = 8 base classifiers.
The performance of a single base classifier is also shown. In this case, each base classifier had
an input decimated set of 22 features for both SONAR1 and SONAR2 after features with little
correlation to each output were deleted. Retaining more features did not result in a significant
drop in correlations, whereas removing more features resulted in drops in individual classifier
performance that were too large to be compensated by combining.

Table 1: Ensemble Performance on both sonar data.

Full Feature Set || Input Decimation
N || Error Rate | § | Error Rate é
1 7.47 £ .10 8.38 + .15
SONAR1 | 4 || 7.05+ .07 | .89 || 7.10 £ .07 | .68
8 || 7.17 + .05 6.99 + .06
1 9.95 + .16 9.73 £ .16
SONAR2 | 4 || 9.26 + .15 | .76 || 8.80 £ .06 | .72
8 8.94 £ .11 8.62 + .06

For SONARI, the deletion of even lowly-correlated inputs reduces the performance of the
base classifier significantly. However, due to the correspondingly large reduction in the error
correlation, input decimated ensembles perform at the level of the full feature set for N = 4, and
provide statistically significant gains for N = 8 classifiers (at the o = .05 level).

For SONAR2, the gains are more significant in that even the input decimated base classifier
improves slightly upon the full featured base classifier, allowing for sizable gains by the input
decimated ensemble. This is achieved in spite of the relatively modest drop in the error correlation
among the base classifiers. Note that the gains due to ID in this domain are quite modest. In
fact, because the dimensionality of the data is low and each feature has particular significance
this data set is not well suited for input decimation. As such, it is remarkable that improvements
were obtained at all.

10gee [64] for a study where the two data sets were used in conjunction.
11 Gabor wavelet coefficients provide a multiscale representation that does not assume signal stationarity [12].



4.2 Probenl/UCI Benchmarks

In the SONAR data presented above each feature carried a significant amount of discriminating
information. In fact, because each feature was carefully extracted from the raw data, one should
not have expected much improvement through input decimation. In this section we perform a
more detailed analysis on three benchmark data sets where we gradually decrease the dimen-
sionality to, in some cases, 5% of the original number of features. On these benchmark sets, we
expect this more extreme case of input decimation to expose the strengths and weaknesses of
this method.

The three data sets from the UCI/PROBEN1 benchmarks [6, 54] selected for this study were:
The Gene data set from PROBENI1 (i.e., using train/test split from PROBEN1); the Splice
junction gene sequences from the UCI Repository; and Satellite Image data sets (Statlog version)
from the UCI Repository. The Gene data set has 120 input features and three classes [46, 54].
The MLP has a single hidden layer of 20 units, a learning rate of 0.2 and a momentum term
of 0.8. The Splice data consists of 60 input features and three classes [6]. Here we selected an
MLP with a single hidden layer composed of 120 units, a learning rate of 0.05, and a momentum
term of 0.1. The Satellite Image data set has 36 input features and 6 classes [6]. We selected
an MLP with a single hidden layer of 50 units, and a learning rate and momentum term of 0.5.
The ensembles consisted of three classifiers for Gene and Splice and six classifiers for Satellite
Image—the same as the number of classes.

Figures 3-5 show the classification performance and classifier correlations for all three data
sets, averaged over 20 runs.'? For clarity we omit the error bars, since they ranged from 0.05 to
0.25% and as such were smaller than the symbols representing the data points. The rightmost
point in each graph (e.g., the point corresponding to 120 features for the Gene data set) shows
the performance when using the full set of features. For the Gene data, the full feature ensemble
is significantly more accurate than the single classifier, while for the Satellite Image and Splice
data sets, the ensemble is only marginally more accurate.

4.2.1 Gene Data

For the Gene data, the input decimated ensemble with 5 inputs performed more poorly than the
original ensemble with all the original 120 inputs. The decimated ensembles with 10 20, 30, 40,
50, and 60 inputs performed significantly better than the original ensemble while the decimated
ensembles with 70 and more inputs performed comparably to the original ensemble. All the
decimated ensembles significantly outperformed their PCA and random-feature counterparts (i.e.,
with the same number of inputs).

The performance of the PCA ensemble is relatively stable and inferior to Input Decimation
Ensembles (IDE) across the board. This is consistent with the fact that principal components are
not necessarily good discriminants. Furthermore adding principal components beyond the first

12For each dataset, we ran random subspace selection five times but show the results of only one run because
the variations among the runs were small.
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Figure 3: Performance (a) and Correlations (b) for the Gene data set.
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few have little effect on the classification performance. Finally, the performance of the ensemble
with random feature subsets improves in random increments (e.g., step-like mini “jumps”) with
the addition of features, depending on how relevant those features are. On the whole random
feature subsets do not provide good solutions for this problem.

4.2.2 Splice Junction Data

In the Splice data experiments, all the decimated feature-based ensembles significantly outper-
formed both the original ensemble and the PCA-based ensembles. Random feature-based ensem-
bles performed somewhat better here than in the Gene data set. With 40 and more features, it
was competitive to input decimation. However, the best performing predictor overall is clearly
the input-decimated ensemble with 10 inputs per classifier. What is particularly notable in this
case is that a reduction of dimensionality based on PCA has a strong negative impact on the
classification performance. With 20 principal components for example, the performance of the
single classifiers drops by 7% relative to the single classifier with all the input features, whereas
the performance of the ID single classifier increases by 3%.

The improvement of the performance of the single classifiers due to decimation is an initially
surprising aspect of these experiments since one may not expect to find too many “irrelevant”
features in these real data sets. However, an analysis shows that the inputs that were decimated
were in fact providing “noise” to the classifier. Although it is theoretically true that the classifier
with more information will do at least as well as the classifier with less information, in practice
with only a limited amount of data, extracting the “correct information” can be difficult for such
classifiers, causing them to perform more poorly than their counterparts with less information.

4.2.3 Satellite Image Data

On the Satellite Image data however, the input decimated ensembles did not perform well. The
ID performance dropped systematically as more features were removed. Both the PCA and
random feature ensembles outperformed IDE’s. Because the single ID classifiers performed more
poorly than the PCA and random feature single classifiers, we examined the features that were
chosen in each ensemble.

Figure 6 shows the average correlations among the features chosen for the base classifiers in
the three types of ensembles (previous figures showed the correlation among the outputs of the
classifiers, whereas Figure 6 looks at the correlation among the selected input features). The
features selected by ID have a much higher correlation among themselves relative to random
and PCA ensembles, especially for smaller numbers of inputs. This means that ID often selects
features with high correlations to the class even though they may be highly correlated with one
another, and therefore redundant. Random feature selection does not fall into this trap since it
does not consider correlations at all. PCA’s correlations are the lowest because it creates features
specifically designed to have low correlations among each other.

12
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Figure 6: Average Correlation of Features in Ensembles for Satellite Image Data.

A similar look at the Gene and Splice data sets reveals that the correlations among the chosen
features for IDE, Random, and PCA ensembles are much closer to one another. In such a case,
ID’s use of class information gives it a significant advantage. Among the three Probenl/UCI data
sets that we explored, Satellite Image is the one with the lowest dimensionality, and contains
global features that are relevant to all the classes, and are therefore always selected by ID. This
feature set exposes a weakness of ID as currently implemented and shows three things: (i) in
order to take advantage of input decimation, the initial dimensionality has to be high, as there
are likely to be more irrelevant features that can be removed; (ii) if there are features that have
significant meaning, they need to be included in the feature set regardless of their correlation to
the particular output; and (iii) redundant features should not be chosen.

To further understand why PCA-based ensembles performed so well on this data set, we
investigated the meaning of each input feature. We observed that consecutive groups of four
features in the satellite image data set correspond to spectral values for a given pixel. In exam-
ining the eigenvalues and eigenvectors, we found that the highest eigenvalue contained 91.6% of
the total energy (sum of the eigenvalues), and the corresponding eigenvector was a simple linear
combination of the four spectral values across all the pixels. PCA ensembles perform well in this
case, because the top few principal components provide very good discriminative features (i.e.,
the data “looks” like that in Figure 2(a)).

15



To remedy the shortcoming of ID as implemented (selecting features that were highly corre-
lated with each other), we explored a variant on the decimation coefficient v, that selects features
having a combination of high absolute correlation with the output and low correlations with the
features already selected. In particular, when selecting the k+ 1st feature for the [th classifier, we
select the original feature j (among those not already selected for the [th classifier) maximizing

V;f”“ted, given by:
viprreeted =y 4 > (1= |eorr(Xig, Xim) )
meFy,
= [eorr(xiz,yn)l + Y (1= [corr(xij, Xim)|)

meF

where Fj;, is set of the first k features selected for the Ith base classifier and ¢ ranges over all
the patterns so that, for example corr(x;j, yi) is the correlation between the jth feature and the
Ilth output in the training set. The first term in the above sum is v; the decimation coefficient
correlation. The second term penalizes those features that are highly correlated with the &
features that have already been selected.

Figure 7 gives the results of using this metric (referred to as “autocorrelation” in the figure) as
well as the results of ID and PCA repeated for comparison. We omit the results of random feature
ensembles to avoid overcrowding the figure. The autocorrelation method does not reach the level
of performance achieved by PCA; however, it significantly improves upon IDE’s for low numbers
of inputs. The base classifiers’ performances are much higher for IDE with autocorrelation
(IDEAC) than for IDE because fewer redundant features are used.

Table 2: Satellite Image: Number of Features Chosen

Base IDE IDE AC
Classifier || Total | Common | Total | Common
5 18 0 15 0
9 28 0 18 1
18 36 0 25 13
27 36 6 30 24

However, the correlations are also much higher for IDEAC than for IDE, and Table 2 provides
an explanation for this. For each number of features used by each base classifier (the first column
of the table), this table gives four quantities. The second column states the number of original
features (out of 36 available features) used in at least one of the six base classifiers in IDE. The
third column states the number of original features used in all six base classifiers. The fourth and
fiftth columns give the same quantities for IDE with autocorrelation. For example, in the case
where each base classifier used 9 inputs, the IDE’s base classifiers used 28 out of the 36 original
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features, and none of them were common to all the base classifiers. The IDEAC’s base classifiers,
on the other hand, used only 18 of the original features, and one of them was used by all six base
classifiers. Clearly, IDEAC’s base classifiers tend to have more features in common among them
compared to IDE’s base classifiers, which naturally leads to higher correlations. Note that IDE
base classifiers perform more poorly, but get a bigger boost from combining, which is consistent
with Equation 4.13.

4.3 Synthetic Data

In the previous two subsections we applied ID to real and benchmark data sets to show the range
of applicability and to stress-test it with real systems. In this section we construct synthetic
data sets to enable us to study the properties of input decimated ensembles in a more systematic
manner. To that end we use the following two synthetic data sets:

e Set A:

— Three classes—one unimodal Gaussian per class.
— 300 training patterns and 150 test patterns—100 training and 50 test patterns per class.
— 100 features per pattern where there are:

* 10 relevant features per class. Patterns that belong to a class are generated from
a multivariate normal distribution in 10 independent dimensions distributed as
N (40,5?). There are no dimensions in common among the three classes. There-
fore, there are 30 relevant features. For patterns in each class, the 20 features
that are relevant to the other two classes are distributed as U[-100, 100].14

* 70 irrelevant features—distributed as U[—100, 100].

e Set B: Same as Set A, except that there is overlap among the relevant features for each
class. That is, each class has three relevant features in common with every other class, but
there are no features that are relevant to all three classes.

In data set A there is an abundance of features that are irrelevant for the classification task.
This data set was chosen to represent large data mining problems where the algorithms may
get swamped by irrelevant data. In data set B the overlap among features relevant to each class
provides a more difficult problem where the base classifiers are now forced to select some common
features, reducing the potential for correlation reduction.

13 As mentioned above, this method is a preliminary attempt at removing redundant features; it simply shows
the feasibility of using feature-feature correlations in addition to feature-output correlations (see Section 5 for a
discussion and future directions)

14Clearly, because of this, all 30 features have some relevance to all three classes; however, the 10 features used
to generate patterns belonging to each class are clearly substantially more relevant than the other 20 features.
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4.3.1 Synthetic Set A

Figure 8 presents the classification accuracies and base classifier correlations on Synthetic data
set A as a function of the number of inputs (which are either the number of selected principal
components or the number of features selected for each base classifier through input decimation or
random selection). The original single classifier and original ensemble use all the input features.!®
The points for the maximum number of features (e.g., 100 features in this data set), always
represent the performance of the original classifier/ensemble. The performance and correlation
for IDE with 100 features differs from those for PCA and random feature ensembles because of
the difference in the number of hidden units in their base classifiers.

An important observation that is apparent from these results is that neither PCA ensembles
nor PCA base classifiers are particularly sensitive to the number of inputs. The correlations
among the base classifiers reinforce this conclusion. Fewer input features in PCA means the
base classifiers are more correlated since they all share the same principal features. The random
feature ensembles’ performances, base models’ performances, and correlations follow the same
pattern: with an increasing number of features, the performances and correlations increase in
random increments, presumably because the additional features being included are of random
relevance to the outputs.

However note that input decimated base classifiers have a low correlation for small numbers
of features, increasing correlation up to 30 features, and decreasing correlation after that. Upon
reflection, this interesting observation is not surprising: each class has a set of 30 features that are
most relevant to it. The other features add nothing but noise, slowly reducing the correlation to
the outputs. The base classifiers’ average performance follows a similar pattern. Note that input
decimated ensembles are not adversely affected by the poor performance of the base classifiers
(e.g., input decimated ensembles with 10 features outperformed input decimated ensembles with
50 features even though base classifiers with 10 features gave significantly worse results than base
classifiers with 50 features). In fact, the input decimated ensemble with 10 inputs was the best
performing classifier on this data set among all the methods tested.

In cases where more than 20 features were used, the performance of the ensemble declined
with the addition of features, i.e., as more and more irrelevant features were included. The input
decimated ensembles with less than 40 features significantly outperformed their PCA ensemble
counterparts, those with 40 and 50 features performed comparably, and those with 60 or more
features performed significantly worse. The input decimated ensembles with 70 and fewer features
significantly outperformed random feature ensembles while those with 80 and more features
performed significantly worse. However, all the input decimation ensembles provided statistically
significant improvements over the original full-featured ensembles.

15The base classifier used was an MLP with a single hidden layer and trained using a learning rate of 0.2 and
a momentum term of 0.5. For IDE’s, the hidden layer had 15 hidden units while for PCA and random feature
subsets, we used 95 hidden units. The number of hidden units chosen was the number of hidden units in the best
performing ensemble of that type. For example, the best performing IDE had 10 inputs and 15 hidden units;
therefore, we chose to show the IDE results for all numbers of inputs with 15 hidden units.
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The single decimated classifiers with 20 and more features outperformed the original single
classifier. This perhaps surprising result (as one might have expected only the ensemble perfor-
mance to improve when using subsets of the features) is mainly due to the simplification of the
learning tasks, which allows the classifiers to learn the mapping more efficiently, as also observed
in the SONAR and UCI data sets.

Interestingly, the average correlation among classifiers does not decrease until a small num-
ber of features remains. We attribute this to the removal of noise—removing noise increases
the amount of information shared between the base classifiers. Indeed, the correlation increases
steadily as features are removed until we reach 30 features (which corresponds to the actual num-
ber of relevant features). After that point, removing features reduces the correlation because the
base classifiers’ feature sets have a decreasing number of common features. The base classifiers’
performances also decline; however, the ensemble performance still remains high. This experi-
ment clearly shows a typical trade-off in ensemble learning: one can either increase individual
classifier performance (as for input decimation with 20 or more features) or reduce the correla-
tion among classifiers (as for input decimation with less than 20 features) to improve ensemble
performance.

4.3.2 Synthetic Set B

Figure 9 presents the results for the second synthetic data set, which is similar to the first data
set except that there is overlap among the relevant features for the classes.!® Because of this
overlap, this feature set has fewer total relevant features and thus it constitutes a more difficult
problem (as indicated by comparing the results on the full feature base classifiers and ensembles
on this data set to the previous one).

The correlations for random feature ensembles are comparable to those for data set A. Note
that the correlations for ID and PCA-based ensembles on this data set remained in a narrower
range than for data set A. Input decimation did not reduce the correlations dramatically for
small feature sets in data set B the way it did in case of data set A. This is mainly caused by
the “coupling” among the base classifiers due to their common input features.

In spite of these difficulties, input decimation ensembles perform extremely well. For less
than 60 features, they significantly outperform PCA ensembles and for less than 80 features they
significantly outperform random-feature ensembles. IDE’s outperforms the original ensemble for
less than 90 features. This is particularly heartening since this feature set is a more representative
abstraction of real data sets (data sets with “clean” separation among classes are quite rare). This
experiment demonstrates that when there is overlap among classes, class information becomes
particularly relevant. PCA and random feature selection operate without this vital information,
therefore they are unlikely to provide competitive performance.

16The base classifier used was an MLP with a single hidden layer and trained using a learning rate of 0.2 and
a momentum term of 0.5. For IDE’s, the hidden layer had 40 hidden units while for PCA and random feature
subsets, we used 95. Again, this difference in the number of hidden units causes the N = 100 performance to be
different for IDE and PCA/Random subset selection.
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5 Discussion

This paper discusses input decimation, a dimensionality reduction-based ensemble method that
provides good generalization performance by reducing the correlations among the classifiers in the
ensemble. Through controlled experiments, we show that the input decimated single classifiers
often outperform the single original classifiers (trained on the full feature set), demonstrating that
simply eliminating irrelevant features can improve performance. In addition, eliminating irrele-
vant features in each of many classifiers using different relevance criteria (in this case, relevance
with respect to different classes) yields significant improvement in ensemble performance through
correlation reduction, as seen by comparing our decimated ensembles to the original ensembles.
Selecting the features using class label information also provides significant performance gains
over PCA-based ensembles and random feature subset selection.

Through our tests on synthetic and real data sets, we examined the characteristics that data
sets need to have to fully benefit from input decimation. We observed that input decimation yields
the greatest improvements over the original ensemble when there are a large number of features
(i.e., where it is likely that there will be irrelevant features). In such cases, by removing the
extraneous features, input decimation reduces noise and thereby reduces the number of training
examples needed to produce a meaningful model (i.e., alleviating the curse of dimensionality).

Our experiments with real data sets—especially the Satellite Image data set—showed that
input decimation may benefit by keeping out redundant features. Furthermore, including some
features that have a high correlation with all classes on average even though they do not have
high correlation with any one class may also help in cases where particular features are important
(e.g., pixel intensity). As discussed below, this constitutes one of our current research topics.

Input decimation shares its fundamental idea of generating a diverse pool of classifiers for
the ensemble with many methods such as bagging and boosting. However, by focusing on the
input features rather than the input patterns, input decimation focuses on a different “axis” of
correlation reduction than bagging and boosting do and is therefore orthogonal to them. We
plan to experiment with using input decimation in conjunction with bagging and boosting in the
future.

A final observation is that input decimation works well in spite of our rather crude choice for
v, the decimation coefficient (i.e., using statistical correlation of each feature individually with
each class). This method succeeds because we have greatly simplified the relevance criterion:
unlike other feature selection methods that consider the discriminatory ability across all classes,
we only consider the relevance of the features to a single class. This typically causes each classifier
in the ensemble to get a different subset of features, leading to the superior performance we have
demonstrated. Nevertheless, we are currently extending this work in four directions: considering
cross-correlations among the features; investigating mutual information-based relevance criteria;
incorporating global relevance into the selection process; and selecting a different number of
features for each classifier.
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